RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2024 Volume 532, Pages 5–46 (Mi znsl7450)

Reflection operator and hypergeometry I: $SL(2,\mathbb{R})$ spin chain

P. V. Antonenkoab, N. M. Belousovac, S. È. Derkachova, S. M. Khoroshkincd

a Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
b Leonhard Euler International Mathematical Institute, Pesochnaya nab. 10, St. Petersburg, 197022, Russia
c National Research University Higher School of Economics, Myasnitskaya 20, Moscow, 101000, Russia
d Skolkovo Institute of Science and Technology, Skolkovo, 121205, Russia

Abstract: In this work we consider open $SL(2,\mathbb{R})$ spin chain, mainly the simplest case of one particle. Eigenfunctions of the model can be constructed using the so-called reflection operator. We obtain several representations of this operator and show its relation to the hypergeometric function. Besides, we prove orthogonality and completeness of one-particle eigenfunctions and connect them to the index hypergeometric transform. Finally, we briefly state the formula for the eigenfunctions in many-particle case.

Key words and phrases: open spin chain, reflection equation, hypergeometric function.

UDC: 517

Received: 05.07.2024

Language: English



© Steklov Math. Inst. of RAS, 2025