RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2024 Volume 533, Pages 124–139 (Mi znsl7470)

Representations of algebra of harmonic eiconals

D. V. Korikov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: We describe the spectrum of the sub-algebra $\mathscr{E}$ of bounded operators on the space $H$ of potential harmonic vector fields on the disk $\mathbb{D}$ generated by the operator integrals (eiconals) of the form $\int t dP_{\Gamma_t}$, where $t\mapsto\Gamma_t$ is an expanding family of arcs in $\mathbb{T}:=\partial\mathbb{D}$ and $P_{\Gamma_t}$ is a projection on the subspace of $H$ spanned by vector fields normal to $\mathbb{T}\setminus\Gamma_t$.

Key words and phrases: spectrum of a $C^*$-algebra, elliptic eiconals, algebraic version of the BC-method.

UDC: 517.986.22, 517.954

Received: 14.09.2024



© Steklov Math. Inst. of RAS, 2025