RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2024 Volume 535, Pages 105–119 (Mi znsl7489)

Infinite-dimensional conic Steiner formula

M. K. Dospolovaab, D. N. Zaporozhetsa

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Leonard Euler International Mathematical Institute at Saint Petersburg (SPB LEIMI), St. Petersburg

Abstract: The classical Steiner formula expresses the volume of the neighborhood of a convex compact set in $\mathbb{R}^d$ as a polynomial in the radius of the neighborhood. In Tsirelson's work [16], this result was extended to the infinite-dimensional case. A spherical analogue of the Steiner formula for convex subsets of $\mathbb{S}^{d-1}$ is also well-known. The aim of this note is to obtain an infinite-dimensional version of this spherical analogue.

Key words and phrases: $GB$-set, intrinsic volumes, Gaussian processes, Grassmannian, isonormal process, conic intrinsic volumes, cones, spherical Steiner formula, Tsirelson's theorem, Grassmann angles, Steiner formula.

UDC: 519.2

Received: 06.11.2024



© Steklov Math. Inst. of RAS, 2025