RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2024 Volume 537, Pages 128–150 (Mi znsl7521)

z'ya's $\Phi$-inequalities on domains

D. Stolyarov

Saint-Petersburg State University, Department of Mathematics and Computer Science

Abstract: We find necessary and sufficient conditions on the function $\Phi$ for the inequality
$$ \Big|\int_\Omega \Phi(K*f)\Big|\lesssim \|f\|_{L_1(\mathbb{R}^d)}^p $$
to be true. Here $K$ is a (possibly vector valued) kernel positive homogeneous of degree $\alpha - d$, $\Phi$ is a $p$-homogeneous function, and $p=d/(d-\alpha)$. The domain $\Omega\subset \mathbb{R}^d$ is either bounded with $C^{1,\beta}$ smooth boundary for some $\beta > 0$ or a halfspace in $\mathbb{R}^d$. As a corollary, we describe the functions $\Phi\colon \mathbb{R}^d \to \mathbb{R}$ positive homogeneous of order $d/(d-1)$ that are suitable for the bound
$$ \Big|\int_\Omega \Phi(\nabla u)\Big|\lesssim \int_\Omega |\Delta u|. $$


Key words and phrases: Sobolev embedding theorems, Bourgain–Brezis inequalities, fractional integration.

UDC: 517.5

Received: 15.04.2024



© Steklov Math. Inst. of RAS, 2025