RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2024 Volume 538, Pages 152–159 (Mi znsl7529)

Chevalley groups over Laurent polynomial rings

A. Stavrova

St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia

Abstract: Let $G$ be a simply connected Chevalley–Demazure group scheme without $\mathrm{SL}_2$-factors. For any unital commutative ring $R$, we denote by $E(R)$ the standard elementary subgroup of $G(R)$, that is, the subgroup generated by the elementary root unipotent elements. Set $K_1^G(R)=G(R)/E(R)$. We prove that the natural map
$$ K_1^G(R[x_1^{\pm 1},\ldots,x_n^{\pm 1}])\to K_1^G\bigl(R((x_1))\ldots((x_n))\bigr) $$
is injective for any $n\ge 1$, if $R$ is either a Dedekind domain or a Noetherian ring that is geometrically regular over a Dedekind domain with perfect residue fields. For $n=1$ this map is also an isomorphism. As a consequence, we show that if $D$ is a PID such that $SL_2(D)=E_2(D)$ (e. g. $D=\mathbb{Z}$), then
$$ G(D[x_1^{\pm 1},\ldots,x_n^{\pm 1}])=E(D[x_1^{\pm 1},\ldots,x_n^{\pm 1}]). $$
This extends earlier results for special linear and symplectic groups due to A. A. Suslin and V. I. Kopeiko.

Key words and phrases: Chevalley group, elementary subgroup, Chevalley–Demazure group scheme, non-stable $K_1$-functor, Laurent polynomials, special PID.

UDC: 511.3

Received: 25.11.2024

Language: English



© Steklov Math. Inst. of RAS, 2025