RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 311, Pages 51–78 (Mi znsl788)

This article is cited in 7 papers

On some exponential integral functionals of BM($\mu$) and BES(3)

A. N. Borodina, P. Salminenb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Matematiska Institutionen

Abstract: In this paper we derive the Laplace transforms of the integral functionals
$$ \int_0^\infty \left(p\left(\exp(B^{(\mu)}_t)+1\right)^{-1}+q\left(\exp(B^{(\mu)}_t)+1\right)^{-2}\right)\,dt, $$
and
$$ \int_0^\infty \left(p\left(\exp(R^{(3)}_t)-1\right)^{-1}+q\left(\exp(R^{(3)}_t)-1\right)^{-2}\right)\,dt, $$
where $p$ and $q$ are real numbers, $\{B^{(\mu)}_t:\ t\geqslant0\}$ is a Brownian motion with drift $\mu>0$, BM($\mu$), and $\{R^{(3)}_t\:t\geq 0\}$ is a $3$-dimensional Bessel process, BES(3). The transforms are given in terms of Gauss' hypergeometric functions and it is seen that the results are closely related to some ones for functionals of Jacobi diffusions. This work generalizes and completes some results of Donati–Martin and Yor [4] and Salminen and Yor [11].

UDC: 519.21

Received: 02.07.2004

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2006, 133:3, 1231–1248

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024