RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 308, Pages 9–22 (Mi znsl825)

This article is cited in 11 papers

On $PC$-ansatz

V. M. Babich

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: The subject of the paper is detailed consideration of known from seventies ansatz:
$$ e^{\operatorname{i}kl(x)}[AD_p(\sqrt{k}e^{-\frac\pi4}m(x))+ k^{-\frac12}e^{\frac\pi4}BD_p^\prime(\sqrt{k}e^{-\frac\pi4}m(x))], $$
where $A$ and $B$ are series:
$$ A=\sum_{s=0}^\infty\frac{A_s(x)}{(\operatorname{i}k)^s};\quad B=\sum_{s=0}^\infty\frac{B_s(x)}{(\operatorname{i}k)^s}. $$
Here $D_p$ are parabolic cylinder functions. Analytical expressions in the first approximation for wave field in the penumbra of the wave reflected by impedance or transparent cone were obtained.

UDC: 517.95

Received: 29.01.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 132:1, 2–10

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024