RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2003 Volume 303, Pages 34–70 (Mi znsl896)

The Carleman–Goluzin–Krylov formula and analytic functions smooth up to the boundary

V. A. Bart

Cardiology Institute named after V. A. Almazov

Abstract: The classical Carleman–Goluzin–Krylov formula recovers an $H^1$-function from its boundary values on an arc. We study this formula when it is applied to Lipschitz spaces of order $\alpha\le1$ and to higher order smoothness spaces. The rate of convergence is estimated and some (counter-) examples are given.

UDC: 517.5

Received: 10.07.2003


 English version:
Journal of Mathematical Sciences (New York), 2005, 129:4, 3944–3965

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024