RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 254, Pages 165–191 (Mi znsl916)

Representations of integers belonging to subsequences of the positive integers by binary quadratic forms

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We consider positive-definite primitive binary quadratic forms of fundamental discriminant $d<0$; $R$ is the genus and $C$ is the class of such forms. We obtain asymptotics for the sum of absolute values of the Fourier coefficients for the Hecke eigenforms of weight 1 and of dihedral type. In an earlier paper (Zap. Nauchn. Semin. POMI, 226 (1996)), the author showed that if $C\in R$, then almost all $R$-representable positive integers are $C$-representable. We extend this result to certain subsequences of $\mathbb N$ such as $\{a_n=p_n+l\}$, $\{a_n=n(n+1)\}$, etc. Finally, for certain genera $R$ with class number greater than one, we prove an asymptotics $(x\to\infty)$ for the sum
$$ \sum_{\substack{n\le x\\ r(n;C)>0}}\frac1{r(n;C)}, $$
where $C$ is a class in $R$ and $r(n;C)$ is the number of representations of a positive integer $n$ by the class $C$.

UDC: 511.466+517.863

Received: 19.10.1998


 English version:
Journal of Mathematical Sciences (New York), 2001, 105:4, 2235–2256

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024