RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 254, Pages 192–206 (Mi znsl919)

This article is cited in 4 papers

On the mean number of solutions of certain congruences

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $f(X)$ be an irreducible polynomial of degree $m\ge3$ with integer coefficients and unit leading coefficient, and let $\rho(n)$ be the number of solutions of the congruence
$$ f(x)\equiv 0\pmod n; \quad 0\le X<n. $$
For certain classes of polynomials (in particular, for Abelian polynomials), the Dirichlet series
$$ \sum_{n-1}^{\infty}\frac{p(n)}{n^s} \quad (\operatorname{Re}s>1) $$
has an analytic continuation to the left of the line $\operatorname{Re}s=1$. This allows us to obtain anasymptotic formula for $\sum_{n\le1}\rho(n)$ as $x\to\infty$, where the error term is better than that obtained on the basis of the modern theory of multiplicative functions.

UDC: 511.466+517.863

Received: 23.10.1998


 English version:
Journal of Mathematical Sciences (New York), 2001, 105:4, 2257–2268

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024