RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2003 Volume 302, Pages 135–148 (Mi znsl924)

This article is cited in 2 papers

On the Distribution of Values of $L(1,f)$

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $S_k(N)^+$ be the set of newforms of weight $k$ for $\Gamma_0(N)$, and let $L(s,f)$, $f\in S_k(N)^+$, be the Hecke $L$-function of the form $f$. It is proved that for every integer $m\ge1$, $k=2$ and $N=p\to\infty$
$$ \sum_{f\in S_2(N)^+}\,L^m(1,f)=\frac{1}{12}B_m N+O(N^{1-\alpha}), $$
where $B_m$ is a constant defined in the paper, and $\alpha=\alpha(m)>0$ is a certain constant. This result implies the existence of the distribution function of the sequence
$$ \{L(1,f),\,f\in S_2(N)^+\},\quad N=p\to\infty, $$
and also yields an explicit expression for the corresponding characteristic function.

UDC: 511.466+517.863

Received: 12.11.2003


 English version:
Journal of Mathematical Sciences (New York), 2005, 129:3, 3890–3897

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024