RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2003 Volume 302, Pages 168–177 (Mi znsl928)

Distribution of lattice points on hyperboloids

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Consider the region $\Omega_0$ on the hyperboloid $1=b^2+ac$ defined by the conditions
$$ 0<L_1\le a\le L_2<1,\quad 0<t_1\le\frac ba\le t_2<1. $$
Let $r(n,\Omega_0)_pr$ be the number of integral points $(a,b,c)$ with $a=p$ (a prime) on the hyperboloid $n=b^2+ac$ ($n>0$ is an integer) such that $(a,b,c)/\sqrt n\in\Omega_0$. It is proved that for prime $P>P(\varepsilon)$, $\varepsilon>0$,
$$ (K-\Delta-\varepsilon)\frac P{\log P}\le r(P^2,\Omega_0)_{pr}\le(K+\Delta+\varepsilon) \frac P{\log P}, $$
where
$$ K=2(t_2-t_1)(L_2-L_1),\quad\Delta=L^2_2\cdot\frac{2\pi}3. $$


UDC: 511.466+517.863

Received: 06.10.2003


 English version:
Journal of Mathematical Sciences (New York), 2005, 129:3, 3910–3915

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024