RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 255, Pages 17–35 (Mi znsl930)

A correction theorem for functions with integral smoothness

E. I. Berezhnoi

P. G. Demidov Yaroslavl State University

Abstract: A theorem similar to the correction theorem of K. Oskolkov is proved. Namely, for a function with a given $k$th modulus of continuity calculated in a symmetric space $X$, for every $\epsilon>0$ a set is presented whose measure is at least $1-\epsilon$ and on which a sharp quantitative estimate of the uniform $k$th modulus of continuity of this function is given. It is shown that this estimate depends only on $\epsilon$ and on the fundamental function of the symmetric space.

UDC: 517.5

Received: 17.08.1997


 English version:
Journal of Mathematical Sciences (New York), 2001, 107:4, 3972–3986

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024