RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 255, Pages 54–81 (Mi znsl934)

Regular unitarily invariant spaces on the complex sphere

E. Doubtsov

Saint-Petersburg State University

Abstract: Let $K$ be a compact space, $X$ a closed subspace of $C(K)$, and $\mu$ a positive measure on $K$. The triple $(X,K,\mu)$ is said to be regular if for any positive function $\varphi\in C(K)$ and for any $\varepsilon>0$ there exists a function $f\in X$ such that $|f|\le\varphi$ on $K$ and $\mu\{t\in K:|f(t)|\ne\varphi(t)\}<\varepsilon$.
The case when $K$ is the unit sphere in $\mathbb C_n$ and the subspace $X$ is invariant with respect to the unitary group is investigated. Sufficient spectral conditions and a necessary condition for regularity are obtained. Connections with compactness of certain Hankel operators and applications to interpolation problems are presented.

UDC: 517.55

Received: 09.04.1998


 English version:
Journal of Mathematical Sciences (New York), 2001, 107:4, 4002–4021

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024