RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 345, Pages 5–24 (Mi znsl94)

On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0<p<1$

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We prove that each translation and dilation invariant subspace $X\subset L^p(\mathbb R^n)$, $X\ne L^p(\mathbb R^n)$, is contained in a maximal translation and dilation invariant subspace of $L^p(\mathbb R^n)$. Moreover, we prove that the set of all maximal translation and dilation invariant subspaces of $L^p(\mathbb R^n)$ has the power of the continuum.

UDC: 517.5

Received: 02.04.2007


 English version:
Journal of Mathematical Sciences (New York), 2008, 148:6, 785–794

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024