RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2003 Volume 301, Pages 144–171 (Mi znsl943)

This article is cited in 6 papers

On algebras of skew polynomials generated by quadratic homogeneous relations

A. V. Golovashkina, V. M. Maximovb

a Tver State Technical University
b Russian State University for the Humanities

Abstract: We consider algebras, with two generators $a$ and $b$, generated by the quadratic relations $ba=\alpha a^2+\beta ab+\gamma b^2$, where the coefficients $\alpha$, $\beta$, and $\gamma$ belong to an arbitrary field $F$ of characteristics $0$. We find conditions for the algebra to be expressed as a skew polynomial algebra with generator $b$ over the polynomial ring $F[a]$. These conditions are equivalent to the existence of the Poincaré–Birkhoff–Witt basis, i.e., basis of the form $\{a^m,b^n\}$.

UDC: 512.55

Received: 19.08.2003


 English version:
Journal of Mathematical Sciences (New York), 2005, 129:2, 3757–3771

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024