RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 255, Pages 184–197 (Mi znsl947)

This article is cited in 7 papers

On the invariance of some classes of holomorphic functions under integral and differential operators

F. A. Shamoyan, I. N. Kursina

I. G. Petrovsky Bryansk State Pedagogical University

Abstract: The following classes of functions analytic in the unit disk are considered:
$$ N^p_\omega=\biggl\{f\in H(D):\|T(f)\|_{L^p_{(\omega)}}=\bigl(\int\limits^1_0\omega(1-r)T^p(f,r)dr\bigr)^{1/p}<+\infty\biggr\}, $$

$$ \tilde N^p_\omega=\biggl\{f\in H(D):\int^1_0\,\int^\pi_{-\pi}\omega(1-r)\bigl(\ln^+|f(re^{i\varphi})|\bigr)^p\,rdrd\varphi<+\infty\biggr\}, $$
where $T(f,r)=\frac1{2\pi}\int\limits^\pi_{-\pi}\ln^+|f(re^{i\varphi})|d\varphi$ is the Nevanlinna haracteristic and $\omega$ is a positive function on $(0,1]$. Necessary and sufficient conditions on $\omega$ are established, under which the classes $N^p_\omega$ and $\tilde N^p_\omega$ are invariant under the operators of differentiation and integration.

UDC: 517.94

Received: 20.12.1997


 English version:
Journal of Mathematical Sciences (New York), 2001, 107:4, 4097–4107

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025