RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 345, Pages 25–50 (Mi znsl95)

This article is cited in 21 papers

Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property

S. V. Astashkina, F. A. Sukochevb

a Samara State University
b Flinders University

Abstract: This paper compares sequences of independent mean zero random variables in a rearrangement invariant space $X$ on $[0,1]$ with sequences of disjoint copies of individual terms in the corresponding rearrangement invariant space $Z_X^2$ on $[0,\infty)$. Principal results of the paper show that these sequences are equivalent in $X$ and $Z_X^2$ respectively if and only if $X$ possesses the (so-called) Kruglov property. We also apply our technique to complement well-known results concerning isomorphism between rearrangement invariant spaces on $[0,1]$ and $[0,\infty)$.

UDC: 517.5

Received: 09.03.2007


 English version:
Journal of Mathematical Sciences (New York), 2008, 148:6, 795–809

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024