RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 345, Pages 55–84 (Mi znsl97)

This article is cited in 5 papers

Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function

Yu. S. Belov


Abstract: Let $\Theta$ be an inner function in the upper half plane and let $K_\Theta=H^2\ominus\Theta H^2$ be the associated model subspace of the Hardy space $H^2$. We call a non-negative function $\omega$ $\Theta$-admissible if in the space $K_\Theta$ there exists a non-zero function $f\in K_\Theta$ such that $|f|\leq\omega$ a.e. on $\mathbb{R}$. We give some sufficient conditions of $\Theta$-admissibility for the case when $\Theta$ is meromorphic and $\arg\Theta$ grows fast ($(\arg\Theta)'$ tends to infinity).

UDC: 517.5

Received: 09.11.2006


 English version:
Journal of Mathematical Sciences (New York), 2008, 148:6, 813–829

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024