RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1999 Volume 256, Pages 129–144 (Mi znsl975)

Spectral estimations for Laplace operator for the discrete Heisenberg group

K. P. Kokhas', A. Suvorov

Saint-Petersburg State University

Abstract: Let $H$ be the discrete 3-dimensional Heisenberg group with the standard generators $x, y,~z$. The element $\Delta$ of the group algebra for $H$ of the form $\Delta=(x+x^{-1}+y+y^{-1})/4$ is called the Laplace operator. This operator can also be defined as transition operator for random walk on the group.
The spectrum of $\Delta$ in the regular representation of $H$ is the interval $[-1,1]$. Let $E(A)$, where $A$ is a subset of $[-1,1]$, be a family of spectral projectors for $\Delta$ and $m(A)=(E(A)e,e)$ be the corresponding spectral measure. Here $e$ is the characteristic function of the unit element of the group $H$. We estimate the value $m([-1,-1+t]\cup [1-t,1])$ when $t$ tends to 0. More precisely we prove the inequality
$$ m([-1,-1+t]\cup [1-t,1])>\mathrm{const}\,t^{2+\alpha} $$
for any positive alpha.

UDC: 517.986

Received: 10.06.1999


 English version:
Journal of Mathematical Sciences (New York), 2001, 107:5, 4237–4247

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025