This article is cited in
3 papers
On the projecting in the space of solenoidal vector fields
M. I. Belisheva,
A. K. Glasmanb a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University
Abstract:
Let
$\Omega\subset\mathbf R^3$ be a bounded domain; let $\Omega^\xi:=\{x\in\Omega\mid\operatorname{dist}(x,\partial\Omega)<\xi\},\xi>0$ be an increasing family of subdomains; let
$\varepsilon=\varepsilon(x)$ be a positive function in
$\overline{\Omega}$; $\mathscr H:=\{\bold y=\bold y(x)\mid\int_\Omega dx\varepsilon|\bold y|^2<\infty,\,\mathrm {div}\,\varepsilon\bold y=0$ in
${\Omega}\}$ be a space of
$\varepsilon$-solenoidal vector fields; let $\mathscr H^\xi:=\{\bold y\in\mathscr H\mid\mathrm {supp}\,\bold y\subset\overline{\Omega^\xi}\}$,
$\xi>0$ be a family of subspaces; let
$G^{\xi}$ be orthogonal projectors in
$\mathscr H$ onto
$\mathscr H^\xi$. The unitary transform which diagonalizes the family of projectors
$\{G^\xi\}$ is constructed: it transfers
$\int\xi dG^\xi$ into an operator multiplying by independent variable. An isometry of the transform is proved with the help of the operator Riccati equation for the Neumann–to–Dirichlet map.
UDC:
517.946
Received: 20.11.1998