Abstract:
An inverse problem for a nonlinear equation in a Hilbert space is considered in which the right-hand side that is a linear combination of given functionals is found from given values of these functionals on the solution. Sufficient conditions for the existence of a solution are established, and the solution set is shown to be homeomorphic to a finite-dimensional compact set. A boundary inverse problem for the three-dimensional thermal convection equations for a viscous incompressible fluid and an inverse magnetohydrodynamics problem are considered as applications.