RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2014 Volume 54, Number 6, Pages 1008–1021 (Mi zvmmf10053)

This article is cited in 46 papers

Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee

S. K. Godunova, I. M. Kulikovbc

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Koptyuga 4, Novosibirsk, 630090, Russia
b Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 6, Novosibirsk, 630090, Russia
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: A new formulation of the Godunov scheme with linear Riemann problems is proposed that guarantees a nondecrease in entropy. The new version of the method is described for the simplest example of one-dimensional gas dynamics in Lagrangian coordinates.

Key words: fluid dynamics equations, computation of discontinuous solutions, Godunov's scheme, entropy nondecrease guarantee.

UDC: 519.634

MSC: 76N15 (80A10)

Received: 11.12.2013

DOI: 10.7868/S0044466914060088


 English version:
Computational Mathematics and Mathematical Physics, 2014, 54:6, 1012–1024

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024