Abstract:
In some applications, boundary value problems for second-order parabolic equations with a special nonself-adjoint operator have to be solved approximately. The operator of such a problem is a weighted sum of self-adjoint elliptic operators. Unconditionally stable two-level schemes are constructed taking into account that the operator of the problem is not self-adjoint. The possibilities of using explicit-implicit approximations in time and introducing a new sought variable are discussed. Splitting schemes are constructed whose numerical implementation involves the solution of auxiliary problems with self-adjoint operators.