RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2014 Volume 54, Number 8, Pages 1270–1280 (Mi zvmmf10074)

This article is cited in 2 papers

Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity

A. A. Bykov, N. N. Nefedov, A. S. Sharlo

Faculty of Physics, Moscow State University, Moscow, 119991, Russia

Abstract: The existence of a solution to a generalized Kolmogorov–Petrovskii–Piskunov equation is proved and its asymptotic expansion of the internal transition layer type is constructed. The convergence of the asymptotics is proved by applying the asymptotic comparison principle developed for a new class of problems.

Key words: nonlinear partial differential equations, comparison principle, contrast structure, internal transition layer, existence theorem, asymptotic expansion.

UDC: 519.633

MSC: 35K57

Received: 02.07.2013
Revised: 03.03.2014

DOI: 10.7868/S0044466914080043


 English version:
Computational Mathematics and Mathematical Physics, 2014, 54:8, 1234–1243

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024