RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2014 Volume 54, Number 9, Pages 1448–1454 (Mi zvmmf10086)

This article is cited in 8 papers

Algorithms for projecting a point onto a level surface of a continuous function on a compact set

N. K. Arutyunova, A. M. Dulliev, V. I. Zabotin

Kazan National Research Technological University, ul. Karla Marksa 10, Kazan, 420111, Tatarstan, Russia

Abstract: Given an equation $f(x)=0$, the problem of finding its solution nearest to a given point is considered. In contrast to the authors’ previous works dealing with this problem, exact algorithms are proposed assuming that the function $f$ is continuous on a compact set. The convergence of the algorithms is proved, and their performance is illustrated with test examples.

Key words: $\varepsilon$-Lipschitz continuity, projection of a point onto a level surface, nonconvex set, solution of a nonlinear equation.

UDC: 519.658

Received: 10.11.2013

DOI: 10.7868/S0044466914090038


 English version:
Computational Mathematics and Mathematical Physics, 2014, 54:9, 1395–1401

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024