RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2014 Volume 54, Number 11, Pages 1793–1805 (Mi zvmmf10113)

Integral equations of plane static boundary value problems in the moment elasticity theory of inhomogeneous isotropic media

N. I. Martynov

Institute of Mathematics, Ministry for Education and Science of Kazakhstan, ul. Pushkina 125, Almaty, 050010, Kazakhstan

Abstract: Boundary value problems in the plane moment and simplified moment elasticity theory of inhomogeneous isotropic media are reduced to Riemann–Hilbert boundary value problems for a quasianalytic vector. Uniquely solvable integral equations over a domain are derived. As a result, weak solutions for composite inhomogeneous elastic media can be determined straightforwardly.

Key words: inhomogeneous isotropic body, moment stresses, integral equations, Riemann–Hilbert boundary value problem, index.

UDC: 519.634

Received: 24.12.2013
Revised: 28.04.2014

DOI: 10.7868/S004446691411009X


 English version:
Computational Mathematics and Mathematical Physics, 2014, 54:11, 1725–1736

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025