RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2015 Volume 55, Number 2, Pages 242–252 (Mi zvmmf10154)

This article is cited in 10 papers

Asymptotic expansions of solutions in a singularly perturbed model of virus evolution

A. A. Archibasova, A. Korobeinikovb, V. A. Soboleva

a Samara State Aerospace University, Moskovskoe shosse 34, Kuibyshev, 443086, Russia
b Centre de Recerca Matematica, Campus de Bellaterra, Edifici C, 08193, Spain

Abstract: An initial boundary value problem for a singularly perturbed system of partial integro-differential equations involving two small parameters multiplying the derivatives is studied. The problem arises in a virus evolution model. An asymptotic solution of the problem is constructed by the Tikhonov–Vasil’eva method of boundary functions. The analytical results are compared with numerical ones.

Key words: singular perturbations, asymptotic expansions, boundary functions, virus evolution, partial integro-differential equation, numerical analytical method.

UDC: 519.634

Received: 27.05.2014

DOI: 10.7868/S0044466915020039


 English version:
Computational Mathematics and Mathematical Physics, 2015, 55:2, 240–250

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024