RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2015 Volume 55, Number 4, Pages 730–736 (Mi zvmmf10197)

This article is cited in 1 paper

On the multiplicative complexity of some Boolean functions

S. N. Selezneva

Moscow State University, Moscow, 119992, Russia

Abstract: In this paper, we study the multiplicative complexity of Boolean functions. The multiplicative complexity of a Boolean function $f$ is the smallest number of $\&$-gates in circuits in the basis $\{x\& y, x\oplus y, 1\}$ such that each such circuit computes the function $f$. We consider Boolean functions which are represented in the form $x_1, x_2\dots x_n\oplus q(x_1,\dots,x_n)$, where the degree of the function $q(x_1,\dots,x_n)$ is $2$. We prove that the multiplicative complexity of each such function is equal to $(n-1)$. We also prove that the multiplicative complexity of Boolean functions which are represented in the form $x_1\dots x_n\oplus r(x_1,\dots,x_n)$, where $r(x_1,\dots,x_n)$ is a multi-affine function, is, in some cases, equal to $(n-1)$.

Key words: Boolean function, circuit, complexity, multiplicative complexity, upper bound.

UDC: 519.7

MSC: Primary 68Q19; Secondary 06E30, 94D05

Received: 05.03.2014

DOI: 10.7868/S0044466915040122


 English version:
Computational Mathematics and Mathematical Physics, 2015, 55:4, 724–730

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025