RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2008 Volume 48, Number 10, Pages 1878–1887 (Mi zvmmf102)

This article is cited in 29 papers

Locally one-dimensional difference schemes for the fractional order diffusion equation

M. M. Lafishevaa, M. H. Shhanukov-Lafishevb

a Institute of Information Science and Problems of Regional Management, Kabardino-Balkar Scientific Center, Russian Academy of Sciences, ul. I. Armand 37a, Nalchik, 360000, Russia
b Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nalchik, 360004, Russia

Abstract: Locally-one-dimensional difference schemes for the fractional diffusion equation in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.

Key words: differential diffusion equation, fractional derivative, stability and convergence of difference schemes, slow diffusion equation, locally one-dimensional difference scheme.

UDC: 519.63

Received: 20.07.2007


 English version:
Computational Mathematics and Mathematical Physics, 2008, 48:10, 1875–1884

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025