RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2015 Volume 55, Number 6, Pages 917–927 (Mi zvmmf10215)

This article is cited in 7 papers

Sharp estimates for the convergence rate of Fourier–Bessel series

V. A. Abilova, F. V. Abilovab, M. K. Kerimovc

a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dagestan State Technical University, pr. Shamilya 70, Makhachkala, 367015, Russia
c Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia

Abstract: Sharp estimates are derived for the convergence rate of Fourier series in terms of Bessel functions of the first kind for some classes of functions characterized by a generalized modulus of continuity. The Kolmogorov $N$-width of these classes of functions are also estimated.

Key words: Bessel functions, Fourier–Bessel series, generalized modulus of continuity, Kolmogorov $N$-width, sharp estimates for convergence rates of series.

UDC: 519.651

Received: 21.01.2015

DOI: 10.7868/S0044466915060022


 English version:
Computational Mathematics and Mathematical Physics, 2015, 55:6, 907–916

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025