RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2015 Volume 55, Number 6, Pages 1028–1038 (Mi zvmmf10224)

This article is cited in 2 papers

On solving the dispersion relations for waves in guiding electrodynamic structures on the complex planes of wavenumbers

V. A. Malakhov, A. S. Raevskii, S. B. Raevskii

Nizhny Novgorod State Technical University n.a. R. E. Alekseev, ul. Minina 24, Nizhni Novgorod, 603950, Russia

Abstract: The problem of solving the dispersion relations for waves in guiding electrodynamic structures on the complex planes of wavenumbers is considered. A method combining the positive features of the Muller method and the phase variation method based on the argument principle is proposed. The implementation of the method is described. For estimating the correctness of the solutions obtained, a new approach employing the convergence to zero of the period-averaged power flux of complex waves is suggested.

Key words: dispersion relation, complex root finding, Muller method, argument principle, method of phase variation.

UDC: 519.634

Received: 10.09.2014

DOI: 10.7868/S0044466915060095


 English version:
Computational Mathematics and Mathematical Physics, 2015, 55:6, 1022–1032

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024