RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2016 Volume 56, Number 1, Pages 113–123 (Mi zvmmf10327)

This article is cited in 10 papers

Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain

A. K. Bazzaevab, M. Kh. Shkhanukov-Lafishevc

a Vladikavkaz Institute of Management, ul. Borodinskaya 14, Vladikavkaz, 362025, Russia
b North Ossetian State University, ul. Vatutina 44–46, Vladikavkaz, 362025, Russia
c Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nalchik, 360004, Russia

Abstract: Locally one-dimensional difference schemes are considered as applied to a fractional diffusion equation with variable coefficients in a domain of complex geometry. They are proved to be stable and uniformly convergent for the problem under study.

Key words: fractional diffusion equation, Caputo fractional derivative, stability and convergence of difference schemes, slow diffusion equation, locally one-dimensional difference schemes.

UDC: 519.633

Received: 12.02.2014
Revised: 29.09.2014

DOI: 10.7868/S0044466916010063


 English version:
Computational Mathematics and Mathematical Physics, 2016, 56:1, 106–115

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025