Abstract:
A finite-difference TVD scheme is presented for problems in nonequilibrium wave dynamics of heterogeneous media with different velocities and temperatures but with identical pressures of the phases. A nonlinear form of artificial viscosity depending on the phase relaxation time is proposed. The computed solutions are compared with exact self-similar ones for an equilibrium heterogeneous medium. The performance of the scheme is demonstrated by numerical simulation with varying particle diameters, grid sizes, and particle concentrations. It is shown that the scheme is efficient in terms of Fletcher's criterion as applied to stiff problems.
Key words:TVD scheme, dynamics of heterogeneous media, stiff problem.