RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2017 Volume 57, Number 3, Pages 382–395 (Mi zvmmf10531)

This article is cited in 2 papers

Rotationally symmetric viscous gas flows

W. Weiganta, P. I. Plotnikovbc

a Bonn University, Bonn, Germany
b Lavrent'ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
c Novosibirsk State University, Novosibirsk, Russia

Abstract: The Dirichlet boundary value problem for the Navier–Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval $(\gamma^*, \infty)$ with a critical exponent $\gamma^*< 4/3$ is proved.

Key words: viscous gas, Navier–Stokes equations, rotational symmetry, Dirichlet boundary value problem, weak solutions.

UDC: 519.63

Received: 26.07.2016

DOI: 10.7868/S0044466917030164


 English version:
Computational Mathematics and Mathematical Physics, 2017, 57:3, 387–400

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024