RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2017 Volume 57, Number 5, Pages 801–813 (Mi zvmmf10571)

This article is cited in 11 papers

The projection Galerkin method for solving the time-independent differential diffusion equation in a semi-infinite domain

A. M. Makarenkova, E. V. Sereginaa, M. A. Stepovichb

a Kaluga Division of the Moscow State Technical University, Kaluga, Russia
b Kaluga State University, Kaluga, Russia

Abstract: Using the diffusion equation as an example, results of applying the projection Galerkin method for solving time-independent heat and mass transfer equations in a semi-infinite domain are presented. The convergence of the residual corresponding to the approximate solution of the timeindependent diffusion equation obtained by the projection method using the modified Laguerre functions is proved. Computational results for a two-dimensional toy problem are presented.

Key words: heat and mass transfer equations, diffusion, projection Galerkin method, Laguerre functions.

UDC: 519.62

Received: 28.03.2016

DOI: 10.7868/S0044466917050076


 English version:
Computational Mathematics and Mathematical Physics, 2017, 57:5, 802–814

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025