Abstract:
A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.
Key words:ideal or viscous incompressible fluid, Reynolds–Kolmogorov flow, short wavelength stability, Richtmyer–Meshkov vortices, long wavelength stability.