RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2018 Volume 58, Number 11, Pages 1771–1779 (Mi zvmmf10850)

On one problem of calculating a two-dimensional convolution with an exponential kernel

A. A. Korotkin, A. A. Maksimov, N. A. Strelkov

Yaroslavl State University, Yaroslavl, Russia

Abstract: The paper presents an algorithm for calculating a two-dimensional discrete convolution with an exponential kernel by solving a boundary value problem for an equation with a second-order finite-difference operator. To solve the boundary value problem, a one-step iterative process converging with a rate of a geometric progression is developed.

Key words: two-dimensional discrete convolution, finite-difference operator, boundary value problem.

UDC: 681.3

Received: 03.10.2017

DOI: 10.31857/S004446690003531-5


 English version:
Computational Mathematics and Mathematical Physics, 2018, 58:11, 1708–1715

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024