RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2019 Volume 59, Number 4, Pages 699–706 (Mi zvmmf10884)

This article is cited in 12 papers

Solution of a contact elasticity problem with a rigid inclusion

R. V. Nammab, G. I. Tsoia

a Computing Center, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, 680000 Russia
b Pacific State University, Khabarovsk, 680035 Russia

Abstract: An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.

Key words: nonpenetration condition, rigid inclusion, crack, duality scheme, modified Lagrangian functional, generalized Newton method.

UDC: 519.634

Received: 24.11.2017
Revised: 14.11.2018
Accepted: 14.11.2018

DOI: 10.1134/S0044466919040136


 English version:
Computational Mathematics and Mathematical Physics, 2019, 59:4, 659–666

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025