RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2021 Volume 61, Number 10, Pages 1646–1655 (Mi zvmmf11303)

This article is cited in 4 papers

Mathematical physics

Nonlocal conservation law in a free submerged jet

A. M. Gaifullin, V. V. Zhvick

Central Aerohydrodynamic Institute, 140180, Zhukovskii, Moscow oblast, Russia

Abstract: A free axisymmetric nonswirling submerged jet of viscous incompressible fluid is considered. For large Reynolds numbers, the unknown constant in the asymptotic Landau–Rumer–Gol'dshtik–Yavorsky solution to the Navier–Stokes equations that describes the far jet field is determined. A similar constant in Loitsyanskii’s solution in the boundary layer approximation is found. These constants are expressed in terms of the distribution of velocity in the jet source using a nonlocal conservation law.

Key words: conservation law, submerged jet, asymptotics, invariant.

UDC: 519.635

Received: 12.02.2021
Revised: 12.02.2021
Accepted: 09.06.2021

DOI: 10.31857/S0044466921100057


 English version:
Computational Mathematics and Mathematical Physics, 2021, 61:10, 1630–1639

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024