RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2022 Volume 62, Number 1, Pages 12–22 (Mi zvmmf11341)

Optimal control

Stable solution of a quadratic minimization problem with a nonuniformly perturbed operator by applying a regularized gradient method

L. A. Artem'eva, A. A. Dryazhenkov, M. M. Potapov

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991, Moscow, Russia

Abstract: A regularized gradient method is proposed for stable solution of a quadratic minimization problem under nonconventional information conditions when the error levels in a specified exact linear operator are known only in weakened norms. The convergence of the method with respect to the argument in the norm of the original space is proved. An example is given that explains in which situations the method can be applied.

Key words: quadratic minimization problem, gradient method, regularization, approximate data.

UDC: 519.853

Received: 23.03.2021
Revised: 23.03.2021
Accepted: 17.09.2021

DOI: 10.31857/S0044466922010033


 English version:
Computational Mathematics and Mathematical Physics, 2022, 62:1, 10–19

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024