RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2022 Volume 62, Number 3, Pages 437–441 (Mi zvmmf11372)

This article is cited in 5 papers

Partial Differential Equations

The Avalos–Triggiani problem for the linear Oskolkov system and a system of wave equations

G. A. Sviridyuka, T. G. Sukachevaab

a South Ural State University, 454080, Chelyabinsk, Russia
b Yaroslav-the-Wise Novgorod State University, 173003, Veliky Novgorod, Russia

Abstract: The Avalos–Triggiani problem for a system of wave equations and the linear Oskolkov system is investigated. The method proposed by G. Avalos and R. Triggiani is used to prove a theorem on the existence of a unique solution to the Avalos–Triggiani problem. The underlying mathematical model involves the linear Oskolkov system describing the flow of an incompressible viscoelastic Kelvin–Voigt fluid of zero order and a vector wave equation describing a structure immersed in the fluid.

Key words: Avalos–Triggiani problem, incompressible viscoelastic fluid, linear Oskolkov system.

UDC: 517.954

Received: 20.05.2021
Revised: 20.05.2021
Accepted: 12.10.2021

DOI: 10.31857/S0044466922020119


 English version:
Computational Mathematics and Mathematical Physics, 2022, 62:3, 427–431

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025