RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2022 Volume 62, Number 8, Pages 1428–1444 (Mi zvmmf11444)

10th International Conference "Numerical Geometry, Meshing and High Performance Computing (NUMGRID 2020/Delaunay 130)"
Mathematical physics

Shock-capturing exponential multigrid methods for steady compressible flows

Sh.-J. Li

Beijing Computational Science Research Center

Abstract: In this paper, a robust and efficient exponential multigrid framework is proposed for computing steady compressible flows. The algorithm based on a global coupling, exponential time integration scheme can provide strong damping effects to accelerate the convergence towards the steady state, while high-frequency, high-order spatial error modes are smoothed out with a s-stage preconditioned Runge–Kutta method. The resultant exponential multigrid framework is shown to be effective for smooth flows and can stabilize shock-capturing computations without limiting or adding artificial dissipation for medium-strength shock waves.

Key words: multigrid method, exponential time discretization, shock wave, compressible flow, preconditioned Runge–Kutta method.

UDC: 519.63

Received: 10.10.2021
Revised: 21.01.2022
Accepted: 11.04.2022

DOI: 10.31857/S0044466922080087


 English version:
Computational Mathematics and Mathematical Physics, 2022, 62:8, 1397–1412

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024