Abstract:
The paper considers a boundary value problem for stationary equations of complex heat transfer with an undetermined boundary condition for the radiation intensity on a part of the boundary and an overdetermined condition on another part of the boundary. An optimization method for solving this problem is proposed, and an analysis of the corresponding problem of boundary optimal control is presented. It is shown that the sequence of solutions of extremum problems converges to the solution of a problem with Cauchy-type conditions. The efficiency of the algorithm is illustrated by numerical examples.
Key words:radiative-conductive heat transfer equations, diffusion approximation, boundary value problem with Cauchy-type conditions, optimal control problem.