RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2023 Volume 63, Number 6, Pages 979–986 (Mi zvmmf11571)

Ordinary differential equations

On Favard local parabolic interpolating splines with additional knots

V. T. Shevaldin

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia

Abstract: Explicit formulas are given for interpolating parabolic splines on a number line interval constructed by J. Favard in 1940. For approximations by these splines in the Sobolev class $W^2_\infty$ of twice differentiable functions, estimates for the norm of the second derivative and the approximation error in the uniform metric are established.

Key words: interpolation, splines, uniform metrics, divided differences, derivative.

UDC: 519.65

Received: 19.04.2022
Revised: 13.12.2022
Accepted: 02.03.2023

DOI: 10.31857/S0044466923060182


 English version:
Computational Mathematics and Mathematical Physics, 2023, 63:6, 1045–1051

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024