RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2023 Volume 63, Number 11, Pages 1839–1848 (Mi zvmmf11648)

Ordinary differential equations

Differential-difference equations with optimal parameters

A. F. Mastryukov

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

Abstract: The paper considers difference schemes with optimal parameters for solving Maxwell’s equations. Using Laguerre transforms, the numerical values of the optimal parameters are determined and differential-difference equations are constructed. Differential-difference equations are solved by the finite-difference method with iterations over small optimal parameters. Optimal second-order difference schemes for one-dimensional and two-dimensional Maxwell’s equations are considered. Optimal parameters of difference schemes are given. It is shown that the use of optimal difference schemes leads to an increase in the accuracy of solution.

Key words: differential-difference equations, finite-difference method, optimal, accuracy, electromagnetic waves, Laguerre method.

UDC: 517.929

Received: 16.12.2022
Revised: 13.06.2023
Accepted: 25.07.2023

DOI: 10.31857/S0044466923110224


 English version:
Computational Mathematics and Mathematical Physics, 2023, 40:11, 2060–2068

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024