RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2024 Volume 64, Number 6, Pages 895–913 (Mi zvmmf11763)

General numerical methods

Rational arithmetic with a round-off

V. P. Varin

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia

Abstract: Computations on a computer with a floating point arithmetic are always approximate. Conversely, computations with the rational arithmetic (in a computer algebra system, for example) are always absolutely exact and reproducible both on other computers and (theoretically) by hand. Consequently, these computations can be demonstrative in a sense that a proof obtained with their help is no different from a traditional one (computer assisted proof). However, usually such computations are impossible in a sufficiently complicated problem due to limitations on resources of memory and time. We propose a mechanism of rounding off rational numbers in computations with rational arithmetic, which solves this problem (of resources), i.e., computations can still be demonstrative but do not require unbounded resources. We give some examples of implementation of standard numerical algorithms with this arithmetic. The results have applications to analytical number theory.

Key words: rational arithmetic, convergents, computer assisted proofs, Brun’s irrationality criterion.

UDC: 519.6

Received: 16.01.2024
Accepted: 05.03.2024

DOI: 10.31857/S0044466924060015


 English version:
Computational Mathematics and Mathematical Physics, 2024, 64:6, 1143–1158

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025