RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2024 Volume 64, Number 6, Pages 1008–1015 (Mi zvmmf11771)

Ordinary differential equations

Existence of solutions to the non-self-adjoint Sturm–Liouville problem with discontinuous nonlinearity

O. V. Baskov, D. K. Potapov

St. Petersburg State University, 199034, St. Petersburg, Russia

Abstract: We examine the existence of solutions to the Sturm–Liouville problem with a non-self-adjoint differential operator and discontinuous nonlinearity in the phase variable. For positive values of the spectral parameter, theorems on the existence of nontrivial (positive and negative) solutions of the problem are proved. Examples illustrating the theorems are given.

Key words: Sturm–Liouville problem, non-self-adjoint differential operator, discontinuous nonlinearity, nontrivial solutions.

UDC: 517.911.5+517.927

Received: 20.12.2023
Accepted: 06.03.2024

DOI: 10.31857/S0044466924060096


 English version:
Computational Mathematics and Mathematical Physics, 2024, 64:6, 1254–1260

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025