RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2024 Volume 64, Number 8, Pages 1342–1354 (Mi zvmmf11804)

General numerical methods

Approximation and smoothing of a function based on Godunov regularization

È. A. Biberdorfa, K. K. Abdisheripovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
b Novosibirsk State University, 630090, Novosibirsk, Russia

Abstract: A new approach to function approximation is presented, based on S.K. Godunov’s ideas on the regularization of ill-conditioned systems. The proposed method allows for determining function values at nodes of a finer grid from data on a coarser grid while ensuring control over the smoothness of the resulting function. Convergence and smoothness estimates are substantiated, and results from computational experiments illustrate the effectiveness of the proposed method.

Key words: approximation, smoothing of functions, regularization of ill-conditioned SLAEs.

UDC: 519.635

Received: 02.04.2024
Revised: 02.04.2024
Accepted: 02.05.2024

DOI: 10.31857/S0044466924080017


 English version:
Computational Mathematics and Mathematical Physics, 2024, 64:8, 1653–1666

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025