Abstract:
A novel method for separating the matrix spectrum by a straight line based on a fractional linear transformation is proposed. This method has a number of advantages over the approaches based on an exponential transformation; more precisely, the range of its application is wider and the number of iterations needed for its convergence is much lower. The proposed method is used to study flutter problems for an infinite strip under various edge fastening conditions, which, after suitable discretization of differential operators, are reduced to spectral problems for linear operators. The study of stability regions by the method of spectrum dichotomy by the imaginary axis makes it possible to construct neutral curves in the plane of parameters of the flutter problem.